741 research outputs found

    Whither discrete time model predictive control?

    Get PDF
    This note proposes an efficient computational procedure for the continuous time, input constrained, infinite horizon, linear quadratic regulator problem (CLQR). To ensure satisfaction of the constraints, the input is approximated as a piecewise linear function on a finite time discretization. The solution of this approximate problem is a standard quadratic program. A novel lower bound on the infinite dimensional CLQR problem is developed, and the discretization is adaptively refined until a user supplied error tolerance on the CLQR cost is achieved. The offline storage of the required quadrature matrices at several levels of discretization tailors the method for online use as required in model predictive control (MPC). The performance of the proposed algorithm is then compared with the standard discrete time MPC algorithms. The proposed method is shown to be significantly more efficient than standard discrete time MPC that uses a sample time short enough to generate a cost close to the CLQR solution

    Temporal Correlations and Persistence in the Kinetic Ising Model: the Role of Temperature

    Full text link
    We study the statistical properties of the sum St=∫0tdtâ€Čσtâ€ČS_t=\int_{0}^{t}dt' \sigma_{t'}, that is the difference of time spent positive or negative by the spin σt\sigma_{t}, located at a given site of a DD-dimensional Ising model evolving under Glauber dynamics from a random initial configuration. We investigate the distribution of StS_{t} and the first-passage statistics (persistence) of this quantity. We discuss successively the three regimes of high temperature (T>TcT>T_{c}), criticality (T=TcT=T_c), and low temperature (T<TcT<T_{c}). We discuss in particular the question of the temperature dependence of the persistence exponent Ξ\theta, as well as that of the spectrum of exponents Ξ(x)\theta(x), in the low temperature phase. The probability that the temporal mean St/tS_t/t was always larger than the equilibrium magnetization is found to decay as t−ξ−12t^{-\theta-\frac12}. This yields a numerical determination of the persistence exponent Ξ\theta in the whole low temperature phase, in two dimensions, and above the roughening transition, in the low-temperature phase of the three-dimensional Ising model.Comment: 21 pages, 11 PostScript figures included (1 color figure

    High-order volterra model predictive control and its application to a nonlinear polymerisation process

    Get PDF
    Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but the existing design and implementation methods are restricted to linear process models. A chemical process involves, however, severe nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC to nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC), and also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design which relieves practising engineers from the need for first deriving a physical-principles based model. An on-line realisation technique for implementing the NMPC is also developed. The NMPC is then applied to a Mitsubishi Chemicals polymerisation reaction process. The results show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order Volterra model based methods. The advantages of the approach developed lie not only in control performance superior to existing NMPC methods, but also in relieving practising engineers from the need for deriving an analytical model and then converting it to a Volterra model through which the model can only be obtained up to the second order

    Robust constrained model predictive control based on parameter-dependent Lyapunov functions

    Get PDF
    The problem of robust constrained model predictive control (MPC) of systems with polytopic uncertainties is considered in this paper. New sufficient conditions for the existence of parameter-dependent Lyapunov functions are proposed in terms of linear matrix inequalities (LMIs), which will reduce the conservativeness resulting from using a single Lyapunov function. At each sampling instant, the corresponding parameter-dependent Lyapunov function is an upper bound for a worst-case objective function, which can be minimized using the LMI convex optimization approach. Based on the solution of optimization at each sampling instant, the corresponding state feedback controller is designed, which can guarantee that the resulting closed-loop system is robustly asymptotically stable. In addition, the feedback controller will meet the specifications for systems with input or output constraints, for all admissible time-varying parameter uncertainties. Numerical examples are presented to demonstrate the effectiveness of the proposed techniques

    Lyapunov-Based Reinforcement Learning for Decentralized Multi-Agent Control

    Full text link
    Decentralized multi-agent control has broad applications, ranging from multi-robot cooperation to distributed sensor networks. In decentralized multi-agent control, systems are complex with unknown or highly uncertain dynamics, where traditional model-based control methods can hardly be applied. Compared with model-based control in control theory, deep reinforcement learning (DRL) is promising to learn the controller/policy from data without the knowing system dynamics. However, to directly apply DRL to decentralized multi-agent control is challenging, as interactions among agents make the learning environment non-stationary. More importantly, the existing multi-agent reinforcement learning (MARL) algorithms cannot ensure the closed-loop stability of a multi-agent system from a control-theoretic perspective, so the learned control polices are highly possible to generate abnormal or dangerous behaviors in real applications. Hence, without stability guarantee, the application of the existing MARL algorithms to real multi-agent systems is of great concern, e.g., UAVs, robots, and power systems, etc. In this paper, we aim to propose a new MARL algorithm for decentralized multi-agent control with a stability guarantee. The new MARL algorithm, termed as a multi-agent soft-actor critic (MASAC), is proposed under the well-known framework of "centralized-training-with-decentralized-execution". The closed-loop stability is guaranteed by the introduction of a stability constraint during the policy improvement in our MASAC algorithm. The stability constraint is designed based on Lyapunov's method in control theory. To demonstrate the effectiveness, we present a multi-agent navigation example to show the efficiency of the proposed MASAC algorithm.Comment: Accepted to The 2nd International Conference on Distributed Artificial Intelligenc

    Single hadron response measurement and calorimeter jet energy scale uncertainty with the ATLAS detector at the LHC

    Get PDF
    The uncertainty on the calorimeter energy response to jets of particles is derived for the ATLAS experiment at the Large Hadron Collider (LHC). First, the calorimeter response to single isolated charged hadrons is measured and compared to the Monte Carlo simulation using proton-proton collisions at centre-of-mass energies of sqrt(s) = 900 GeV and 7 TeV collected during 2009 and 2010. Then, using the decay of K_s and Lambda particles, the calorimeter response to specific types of particles (positively and negatively charged pions, protons, and anti-protons) is measured and compared to the Monte Carlo predictions. Finally, the jet energy scale uncertainty is determined by propagating the response uncertainty for single charged and neutral particles to jets. The response uncertainty is 2-5% for central isolated hadrons and 1-3% for the final calorimeter jet energy scale.Comment: 24 pages plus author list (36 pages total), 23 figures, 1 table, submitted to European Physical Journal

    Standalone vertex ïŹnding in the ATLAS muon spectrometer

    Get PDF
    A dedicated reconstruction algorithm to find decay vertices in the ATLAS muon spectrometer is presented. The algorithm searches the region just upstream of or inside the muon spectrometer volume for multi-particle vertices that originate from the decay of particles with long decay paths. The performance of the algorithm is evaluated using both a sample of simulated Higgs boson events, in which the Higgs boson decays to long-lived neutral particles that in turn decay to bbar b final states, and pp collision data at √s = 7 TeV collected with the ATLAS detector at the LHC during 2011

    Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    Get PDF
    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H →γ Îł, H → Z Z∗ →4l and H →W W∗ →lÎœlÎœ. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of √s = 7 TeV and √s = 8 TeV, corresponding to an integrated luminosity of about 25 fb−1. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined ïŹts probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson

    Measurement of the top quark pair cross section with ATLAS in pp collisions at √s=7 TeV using final states with an electron or a muon and a hadronically decaying τ lepton

    Get PDF
    A measurement of the cross section of top quark pair production in proton-proton collisions recorded with the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 7 TeV is reported. The data sample used corresponds to an integrated luminosity of 2.05 fb -1. Events with an isolated electron or muon and a τ lepton decaying hadronically are used. In addition, a large missing transverse momentum and two or more energetic jets are required. At least one of the jets must be identified as originating from a b quark. The measured cross section, σtt-=186±13(stat.)±20(syst.)±7(lumi.) pb, is in good agreement with the Standard Model prediction

    Measurement of the top quark-pair production cross section with ATLAS in pp collisions at \sqrt{s}=7\TeV

    Get PDF
    A measurement of the production cross-section for top quark pairs(\ttbar) in pppp collisions at \sqrt{s}=7 \TeV is presented using data recorded with the ATLAS detector at the Large Hadron Collider. Events are selected in two different topologies: single lepton (electron ee or muon Ό\mu) with large missing transverse energy and at least four jets, and dilepton (eeee, ΌΌ\mu\mu or eΌe\mu) with large missing transverse energy and at least two jets. In a data sample of 2.9 pb-1, 37 candidate events are observed in the single-lepton topology and 9 events in the dilepton topology. The corresponding expected backgrounds from non-\ttbar Standard Model processes are estimated using data-driven methods and determined to be 12.2±3.912.2 \pm 3.9 events and 2.5±0.62.5 \pm 0.6 events, respectively. The kinematic properties of the selected events are consistent with SM \ttbar production. The inclusive top quark pair production cross-section is measured to be \sigmattbar=145 \pm 31 ^{+42}_{-27} pb where the first uncertainty is statistical and the second systematic. The measurement agrees with perturbative QCD calculations.Comment: 30 pages plus author list (50 pages total), 9 figures, 11 tables, CERN-PH number and final journal adde
    • 

    corecore